Computation of Domain-Averaged Irradiance Using Satellite-Derived Cloud Properties

Seiji Kato¹, Fred Rose², and Thomas P .Charlock³

¹Hampton University

²Analytical Service &materials, Inc.

³NASA Langley Research Center

Objectives

• To understand errors in the modeled irradiance by the gamma-weighted two-stream approximation and effective thickness approximation when they are used for estimating global radiation budget.

Methods of Estimating Error

- Use cloud optical thickness from SSF
- Domains are CERES footprints (20 to 170 km) and a footprint contains ≈ 200 to ≈30000 pixels (1km).
- IPA provides the truth.

Cloud Properties over CERES footprints

Overcast Clouds 30 degree solar zenith angle

Error by GWTSA (Wm²)

ERROR by ETA (Wm²)

Gamma distribution and max t

$$\frac{\partial^2}{\partial \ln t^2} \frac{gt / m_0}{1 + gt / m_0} \propto 1 - gt / m_0$$

Partly Cloudy

30 degree solar zenith angle Fluxes are for 100% cloud cover

Dividing Cloud Layer for Computations

Transmittance of A is not the same as transmittance of B (Oreopoulos and Barker 1999)

$$\overline{(T_1 + \Delta T_1)(T_2 + \Delta T_2)} = \overline{T_1}\overline{T_2} + \overline{\Delta T_1}\Delta T_2$$

Effect of Cloud Layers on GWTSA

Solar Zenith Angle = 30°

Shape parameter = 1

Solar Zenith Angle = 60°

Error by GWTSA with 4-layer overcast clouds

30 degree solar zenith angle

Flux Error (W m⁻²) at $? = 30^{\circ}$

	Gamma	Max t	4-layer	ETA
Overcast	3.3	2.8	8.4	0.5
32%	(21)	(8)	(11)	(27)
Partly	-2.3	-0.1	3.6	-21.5
Cloudy	(19)	(6)	(9)	(27)
68%				

Summary

- GWTSA works better for partly cloudy scene and overcast clouds with one computational layer. It needs some improvements for multi-layer clouds.
- ETA works well when $t/\mu_0 \approx 10$.